Flyttande medelvärde - MA. BREAKING DOWN Moving Average - MA. As ett SMA-exempel, överväga en säkerhet med följande stängningskurser över 15 dagar. Vecka 1 5 dagar 20, 22, 24, 25, 23.Veek 2 5 dagar 26, 28 , 26, 29, 27.Veek 3 5 dagar 28, 30, 27, 29, 28.A 10-dagars MA skulle genomsnittliga slutkurserna för de första 10 dagarna som första datapunkt. Nästa datapunkt skulle släppa den tidigaste Pris, lägg till priset på dag 11 och ta medeltalet och så vidare som visas nedan. Som noterat tidigare lagrar MAs nuvarande prisåtgärd eftersom de är baserade på tidigare priser, ju längre tid för MA, desto större är lagret en 200-dagars MA kommer att ha en mycket större grad av fördröjning än en 20-dagars MA eftersom den innehåller priser för de senaste 200 dagarna. Den längd som MA ska använda beror på handelsmålen, med kortare MAs som används för kortfristig handel Och långsiktiga MAs passar bättre för långsiktiga investerare 200-dagars MA följs i stor utsträckning av investerare och handlare, med raster över och under denna glidande genomsnittliga konsi Många av de viktigaste handelssignalerna är att de också ger viktiga handelssignaler på egen hand eller när två genomsnitt överstiger. En stigande MA indikerar att säkerheten är i en uptrend medan en minskande MA indikerar att den ligger i en nedåtgående trend. På liknande sätt är uppåtgående momentum bekräftas med en bullish crossover som uppstår när en kortsiktig MA korsar en längre sikt MA Nedåtgående momentum bekräftas med en bearish crossover som uppstår när en kortsiktig MA korsar en längre sikt MA. Moving Averages Vad är de. Under de mest populära tekniska indikatorerna används glidande medelvärden för att mäta riktningen för den aktuella trenden. Varje typ av rörligt medelvärde som vanligtvis skrivs i denna handledning, eftersom MA är ett matematiskt resultat som beräknas genom att medelvärdet av ett antal tidigare datapunkter beräknas. En gång bestämt, Det resulterande genomsnittet plottas sedan på ett diagram för att låta handlare se på jämn data istället för att fokusera på de dagliga prisfluktuationer som är inneboende i alla finanser almarknader. Den enklaste formen av ett glidande medelvärde, lämpligt känt som ett enkelt glidande medelvärde SMA, beräknas genom att ta det aritmetiska medelvärdet av en given uppsättning värden. För att exempelvis beräkna ett grundläggande 10-dagars glidande medelvärde skulle du lägga till stängningspriser från de senaste 10 dagarna och sedan dela resultatet med 10 I figur 1 är summan av priserna för de senaste 10 dagarna 110 dividerat med antalet dagar 10 för att komma fram till 10-dagars genomsnittet Om en näringsidkare vill Se ett 50-dagars medelvärde istället skulle samma typ av beräkning göras men det skulle inkludera priserna under de senaste 50 dagarna. Det resulterande genomsnittet under 11 tar hänsyn till de senaste 10 datapunkterna för att ge handlare en uppfattning om hur En tillgång är prissatt relativt de senaste 10 dagarna. Kanske undrar du varför tekniska handlare kallar det här verktyget ett glidande medelvärde och inte bara ett vanligt medel Svaret är att när nya värden blir tillgängliga måste de äldsta datapunkterna släppas från uppsättningen Och nya datapunkter måste komma i N för att ersätta dem Således flyttar datasatsen kontinuerligt för att redogöra för nya data när den blir tillgänglig. Denna beräkningsmetod säkerställer att endast den aktuella informationen redovisas i figur 2, när det nya värdet på 5 läggs till i uppsättningen , den röda rutan som representerar de senaste 10 datapunkterna flyttas till höger och det sista värdet av 15 släpps från beräkningen Eftersom det relativt lilla värdet på 5 ersätter högt värdet på 15, skulle du förvänta dig att se genomsnittet av datasatsen minska, vilket gör det, i det här fallet från 11 till 10.Hva rörliga medelvärden ser ut När väl värdena för MA har beräknats, plottas de på ett diagram och kopplas sedan till för att skapa en glidande medellinje. Dessa kurvor är vanliga på diagrammen av tekniska handlare, men hur de används kan variera drastiskt mer på det senare. Som du kan se i Figur 3 är det möjligt att lägga till mer än ett glidande medelvärde till ett diagram genom att justera antalet tidsperioder som används i Calculat jon Dessa böjda linjer kan tyckas distraherande eller förvirrande först, men du blir vana vid dem som tiden går. Den röda linjen är helt enkelt genomsnittspriset under de senaste 50 dagarna, medan den blå linjen är genomsnittspriset under de senaste 100 dagarna. Nå att du förstår vad ett rörligt medelvärde är och hur det ser ut, introducerar vi en annan typ av rörligt medelvärde och undersöker hur det skiljer sig från det tidigare nämnda enkla rörliga genomsnittet. Det enkla glidande medlet är extremt populärt bland handlare, men som alla tekniska indikatorer, det har sina kritiker Många individer hävdar att användbarheten av SMA är begränsad eftersom varje punkt i dataserien är vägd densamma, oavsett var det sker i sekvensen. Kritiker hävdar att de senaste uppgifterna är betydande Än de äldre uppgifterna och borde få större inverkan på slutresultatet Som svar på denna kritik började näringsidkare lägga större vikt vid de senaste uppgifterna, som sedan lett till uppfinningen o F olika typer av nya medelvärden, varav den mest populära är det exponentiella glidande genomsnittet EMA För vidare läsning, se Grunderna för viktade rörliga medelvärden och vad är skillnaden mellan en SMA och en EMA. Exponential Moving Average Det exponentiella glidande medlet är en typ Av glidande medelvärde som ger större vikt vid de senaste priserna i ett försök att göra det mer mottagligt för ny information Att lära sig den något komplicerade ekvationen för att beräkna en EMA kan vara onödig för många handlare eftersom nästan alla kartläggningspaket gör beräkningarna för dig. du matte geeks där ute, här är EMA-ekvationen. När du använder formeln för att beräkna EMAs första punkt kan du märka att det inte finns något värde tillgängligt för att använda som tidigare EMA. Detta lilla problem kan lösas genom att börja beräkna Med ett enkelt glidande medelvärde och fortsätter med ovanstående formel från där Vi har försett dig med ett provkalkylblad som innehåller verkliga exempel på hur man beräknar ulat både ett enkelt glidande medelvärde och ett exponentiellt rörligt medelvärde. Skillnaden mellan EMA och SMA Nu när du har en bättre förståelse för hur SMA och EMA beräknas, låt oss ta en titt på hur dessa medelvärden skiljer sig. beräkningen av EMA kommer du att märka att mer vikt läggs på de senaste datapunkterna, vilket gör det till en typ av vägt genomsnitt. I Figur 5 är antalet tidsperioder som används i varje genomsnitt identiskt 15, men EMA svarar snabbare för att de förändrade priserna Observera hur EMA har ett högre värde när priset stiger och faller snabbare än SMA när priset sjunker. Denna responsivitet är den främsta anledningen till att många handlare föredrar att använda EMA över SMA. Vad gör det olika Days Mean Flyttande medelvärden är en helt anpassningsbar indikator, vilket innebär att användaren fritt kan välja vilken tidsram de vill ha när de skapar genomsnittet. De vanligaste tidsperioderna som används i glidande medelvärden är 15, 20, 30, 50, 1 00 och 200 dagar Den kortare tidsperioden som användes för att skapa medelvärdet, desto känsligare blir det för prisändringar Ju längre tid, desto mindre känslig eller mer utjämning blir medeltiden Det finns ingen rätt tidsram för att Använd när du ställer in dina glidande medelvärden Det bästa sättet att ta reda på vilket som passar dig bäst är att experimentera med ett antal olika tidsperioder tills du hittar en som passar din strategi. Att hitta genomsnittliga och exponentiella utjämningsmodeller. Som ett första steg i Förflyttning utöver genomsnittliga modeller, slumpmässiga gångmodeller och linjära trendmodeller, nonseasonal mönster och trender kan extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde Därför tar vi ett rörligt lokalt medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognos för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och t han slumpmässig-walk-without-drift-modell Samma strategi kan användas för att uppskatta och extrapolera en lokal trend Ett rörligt medelvärde kallas ofta en jämn version av originalserien eftersom kortfristig medelvärde har en effekt att utjämna stötarna i den ursprungliga serien Genom att justera graden av utjämning av det rörliga genomsnittsbredden kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel - och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är Simply Equal-weighted Moving Average. The prognosen för värdet av Y vid tiden t 1 som är gjord vid tiden t är lika med det enkla genomsnittet av de senaste m-observationerna. Här och på andra ställen kommer jag att använda symbolen Y-hat för att kunna förutse en prognos av tidsserie Y som gjorts så tidigt som möjligt före en given modell. Detta medel är centrerat vid period-m 1 2, vilket innebär att uppskattningen av Den lokala medelvärdet tenderar att ligga bakom det verkliga värdet av det lokala medelvärdet med ca m 1 2 perioder Således säger vi att medeltal för data i det enkla glidande medlet är m 1 2 relativt den period som prognosen beräknas för det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkterna i data. Om du till exempel medger de senaste 5 värdena kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m 1, Den enkla glidande SMA-modellen motsvarar den slumpmässiga promenadmodellen utan tillväxt Om m är mycket stor jämförbar med längden av uppskattningsperioden är SMA-modellen lika med medelmodellen. Som med vilken parameter som helst av en prognosmodell är det vanligt för att justera värdet på ki n för att få den bästa passformen till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar uppvisa slumpmässiga fluktuationer runt ett långsamt varierande medel. Låt oss försöka passa det med en slumpmässig promenad modell, vilket motsvarar ett enkelt glidande medelvärde av 1 term. Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer den mycket av bruset i data, de slumpmässiga fluktuationerna samt signalen den lokala medelvärde Om vi istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser. Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i detta fall Medelåldern för data i detta prognosen är 3 5 1 2, så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare. Notera att den långsiktiga termiska prognoser från SMA mod el är en horisontell rak linje, precis som i den slumpmässiga promenadmodellen. Således antar SMA-modellen att det inte finns någon trend i data. Även om prognoserna från slumpmässig promenadmodellen helt enkelt motsvarar det senast observerade värdet, kommer prognoserna från SMA-modellen är lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla rörliga genomsnittet blir inte större eftersom prognosen för horisonten ökar. Detta är uppenbarligen inte korrekt. Tyvärr finns ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde öka för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre horisont. Till exempel kan du skapa ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt, etc inom det historiska dataprovet. Du kan sedan beräkna provstandardavvikelserna av fel vid varje prognos h orizon och konstruera sedan konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar av lämplig standardavvikelse. Om vi försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt. Medelåldern är Nu 5 perioder 9 1 2 Om vi tar ett 19-årigt glidande medelvärde, ökar medeltiden till 10. Notera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-årigt genomsnitt. Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över de tre och 9-siktiga genomsnitten, och Deras andra statistik är nästan identiska Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. Tillbaka till början av sidan. Brons s Exponentiell utjämning exponentiellt vägd glidande medelvärdet. Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer Intuitivt bör tidigare data diskonteras mer gradvis - till exempel bör den senaste observationen Få lite mer vikt än 2: a senast och 2: a senast bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämning SES-modellen åstadkommer detta. Låt beteckna en utjämningskonstant ett tal mellan 0 och 1 Ett sätt att skriva modellen är att definiera en serie L som representerar den aktuella nivån, dvs det lokala medelvärdet av serien som uppskattat från data upp till idag. Värdet av L vid tid t beräknas rekursivt från sitt eget tidigare värde som detta. Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där kontrollen av det interpolerade värdet är så nära som möjligt cent observation Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet. Evivalent kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner I den första versionen är prognosen en interpolering Mellan föregående prognos och tidigare observation. I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel. Erroren vid tidpunkten t I den tredje versionen är prognosen en exponentiellt viktad dvs diskonterat glidande medelvärde med rabattfaktor 1.Interpoleringsversionen av prognosformuläret är det enklaste att använda om du implementerar modellen på ett kalkylblad som passar i en enda cell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet av lagras. Notera att om 1, motsvarar SES-modellen en slumpmässig promenadmodell wit träväxt Om 0, motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet Return to top of the page. Den genomsnittliga åldern för data i prognosen för enkel exponentiell utjämning är 1 relativ till den period som prognosen beräknas för. Detta är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie. Därför tenderar den enkla glidande genomsnittliga prognosen att ligga bakom vändpunkter med cirka 1 period. Till exempel när 0 5 fördröjningen är 2 perioder när 0 2 fördröjningen är 5 perioder då 0 1 fördröjningen är 10 perioder och så vidare. För en given medelålder, dvs mängden fördröjning, är den enkla exponentiella utjämning SES-prognosen något överlägsen den enkla rörelsen genomsnittlig SMA-prognos eftersom den lägger relativt större vikt vid den senaste observationen - det är något mer responsivt på förändringar som inträffade under det senaste. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 0 2 båda en genomsnittlig ålder av 5 för da ta i sina prognoser, men SES-modellen lägger mer vikt på de senaste 3 värdena än SMA-modellen och samtidigt glömmer det inte helt värderingar som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som är kontinuerligt variabel så att den lätt kan optimeras genom att använda en solveralgoritm för att minimera medelkvadratfelet. Det optimala värdet av SES-modellen för denna serie visar sig Att vara 0 2961, som visas här. Medelåldern för data i denna prognos är 1 0 2961 3 4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är En horisontell rak linje som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt Men notera att de konfidensintervaller som beräknas av Statgraphics nu avviker på ett rimligt sätt och att de är väsentligt smalare än förtroendeintervallet för rand Om walk-modellen SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell, så den statistiska teorin om ARIMA-modeller ger en bra grund för att beräkna konfidensintervaller för SES-modell SES-modellen är speciellt en ARIMA-modell med en icke-säsongsskillnad, en MA 1-term och ingen konstant term som annars kallas en ARIMA 0,1,1-modell utan konstant MA1-koefficienten i ARIMA-modellen motsvarar Kvantitet 1- i SES-modellen Om du till exempel passar en ARIMA 0,1,1-modell utan konstant till den analyserade serien, visar den uppskattade MA 1-koefficienten sig på 0 7029, vilket är nästan exakt en minus 0 2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend för en SES-modell. Ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA 1-term med en konstant, dvs en ARIMA 0,1,1-modell med konstant De långsiktiga prognoserna kommer att Då har en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant lång Termisk exponentialutveckling till en enkel exponentiell utjämningsmodell med eller utan säsongjustering genom att använda inflationsjusteringsalternativet i prognostiseringsförfarandet. Den lämpliga inflationsprocenttillväxten per period kan uppskattas som lutningskoefficienten i en linjär trendmodell monterad på data i Samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter. Tillbaka till början av sidan. Brett s Linjär dvs dubbel exponentiell utjämning. SMA-modellerna och SES-modellerna antar att det inte finns någon trend av Vilken typ som helst i de data som vanligtvis är ok eller åtminstone inte för dålig för 1-stegs prognoser när data är relativt noi sy och de kan modifieras för att införliva en konstant linjär trend som visad ovan. Vad sägs om kortsiktiga trender Om en serie visar en varierande tillväxthastighet eller ett cykliskt mönster som står klart mot bruset och om det finns behov av att Prognos mer än 1 år framåt, kan uppskattning av en lokal trend också vara ett problem. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning av LES-modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trenden Modellen är Brown s linjär exponentiell utjämningsmodell, som använder två olika släta serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centren. En mer sofistikerad version av denna modell, Holt s, är diskuteras nedan. Den algebraiska formen av Browns linjära exponentiella utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men e kvivalenta former Standardformen för denna modell uttrycks vanligen enligt följande. Låt S beteckna den singelglatta serien som erhållits genom att applicera enkel exponentiell utjämning till serie Y Det betyder att värdet på S vid period t ges av. Minns att under enkel exponentiell utjämning skulle detta vara prognosen för Y vid period t 1 Låt sedan S beteckna den dubbelsidiga serien som erhållits genom att applicera enkel exponentiell utjämning med samma till serie S. Slutligen är prognosen för Y tk för vilken som helst K 1, ges av. Detta ger e 1 0 dvs lurar lite och låt den första prognosen motsvara den faktiska första observationen och e 2 Y 2 Y 1, varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden Som formel baserad på S och S om den senare startades med användning av S 1 S 1 Y 1 Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Helt s linjär exponentiell utjämning. s LES-modellen beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på datamönstren att den kan passa nivån och trenden får inte variera vid oberoende priser Holt s LES-modellen tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown s-modellen, finns det en uppskattning L t på lokal nivå och en uppskattning T T av den lokala trenden Här beräknas de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som tillämpar exponentiell utjämning åt dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L tl och T t-1, varför prognosen för Y t som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1 När det verkliga värdet observeras, uppdateras uppskattningen av nivån beräknas rekursivt genom att interpolera mellan Yt och dess prognos L t-1 T t 1 med vikter av och 1. Förändringen i beräknad nivå, nämligen L t L t 1 kan tolkas som en bullrig mätning av Trenden vid tiden t Den uppdaterade uppskattningen av trenden beräknas därefter rekursivt genom interpolering mellan L t L t 1 och den tidigare uppskattningen av trenden, T t-1 med vikter av och 1.Tolkningen av trendutjämningskonstanten är analog med den för jämnliknande konstanten Modeller med små värden antar att trenden förändras bara mycket långsamt över tiden medan modeller med större antar att det förändras snabbare En modell med en stor tror att den avlägsna framtiden är mycket osäker eftersom fel i trendberäkning blir ganska viktiga när prognoser mer än en period framöver. Av sidan. Utjämningskonstanterna och kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 0 3048 och 0 008 Det mycket lilla värdet av Innebär att modellen antar mycket liten förändring i trenden från en period till en annan, så i princip försöker denna modell uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används vid uppskattning av t han lokal nivå av serien, är den genomsnittliga åldern för de data som används för att uppskatta den lokala trenden proportionell mot 1, men inte exakt lika med det i det här fallet visar sig vara 1 0 006 125 Detta är inte mycket exakt nummer Eftersom beräkningsnoggrannheten inte är riktigt 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medeltal över ganska mycket historia för att beräkna trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som uppskattas i SES-trendmodellen. Det uppskattade värdet är nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend , så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du eyeball denna plot ser det ut som om den lokala trenden har vänt sig nedåt i slutet av Serie Wh Vid har hänt Parametrarna för denna modell har uppskattats genom att minimera kvadreringsfelet i 1-stegs prognoser, inte längre prognoser, i vilket fall trenden gör inte stor skillnad. Om allt du tittar på är 1 - steg framåtfel, ser du inte den större bilden av trender över säga 10 eller 20 perioder För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den Använder en kortare baslinje för trenduppskattning. Om vi exempelvis väljer att ställa in 0 1, är medelåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket betyder att vi medeltar trenden under de senaste 20 perioderna eller så Här är vad prognosplottet ser ut om vi ställer in 0 1 samtidigt som vi håller 0 3 Det ser intuitivt rimligt ut för den här serien, även om det är troligt farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad med felstatistik Här är En modell jämförelse f eller de två modellerna som visas ovan samt tre SES-modeller Det optimala värdet på SES-modellen är ungefär 0 3, men liknande resultat med något mer eller mindre responsivitet erhålls med 0 5 och 0 2. En Holt s linjär expo-utjämning Med alfa 0 3048 och beta 0 008. B Holt s linjär expjäkning med alfa 0 3 och beta 0 1. C Enkel exponentiell utjämning med alfa 0 5. D Enkel exponentiell utjämning med alfa 0 3. E Enkel exponentiell utjämning med alfa 0 2.De statistiken är nästan identiska, så vi kan verkligen inte göra valet på grundval av prognosfel i ett steg i dataprovet. Vi måste falla tillbaka på andra överväganden. Om vi starkt tror att det är vettigt att basera strömmen trendberäkning om vad som hänt under de senaste 20 perioderna eller så kan vi göra ett fall för LES-modellen med 0 3 och 0 1 Om vi vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna Vara lättare att förklara och skulle också ge mer medel e-of-the-road prognoser för de kommande 5 eller 10 perioderna Gå tillbaka till toppen av sidan. Vilken typ av trend-extrapolation är bäst horisontellt eller linjärt. Empiriska bevis tyder på att om uppgifterna redan har justerats om det behövs för inflationen, då Det kan vara oskäligt att extrapolera kortsiktiga linjära trender långt in i framtiden. Trenden som uppenbaras idag kan slakta i framtiden på grund av olika orsaker som produktförstöring, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Därför är det enkelt exponentiellt Utjämning utförs ofta bättre utom provet än vad som annars skulle kunna förväntas trots sin naiva horisontella trend-extrapolering. Dämpade trendändringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den dämpade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA 1,1,2-modell. Det är möjligt att beräkna konfidensintervall arou nd långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller Var försiktig att inte alla mjukvaror beräknar konfidensintervaller för dessa modeller korrekt. Bredden på konfidensintervallet beror på jag RMS-felet i modellen, ii typen av utjämning enkel eller linjär iii värdet s för utjämningskonstanten s och iv antalet framåtprognoser du förutspår Allmänt sprids intervallen snabbare och blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används Detta avsnitt diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. Gå tillbaka till början av sidan.
No comments:
Post a Comment